USB-1000 系列多功能数据采集卡

USB-1252 / USB-1252A

用户手册

Rev: B

北京思迈科华技术有限公司 www.smacq.com www.smacq.cn

1.)	产品	介绍	4
1.1	ι.	概述	4
1.2	2.	功能结构框图	4
1.3	3.	产品特性	4
1.4	1.	产品规范	5
		模拟输入	5
		数字 IO	6
		计数器	6
		总线接口	6
		电源要求	7
		其他规格	7
2.	外观.	与信号连接说明	8
- 2 1	1	→□ → □ → □ → □ → □ → □ → □ → □ → □ → □	0
2.1	L.)	(山)小观 住县本接道明	0
2.2	_ •	旧 5 建按 6 切	9
		(天)欧洲八百万	
23	2	数于 IO 恒 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	12
2.5).	USD	12
3.	安装-	与测试	13
3.1	L	驱动安装	13
3.2	2.	硬件安装	15
4. 7	榵拟	输入	15
4.1	L	慨还	15
4.2	<u>/</u> .	制入重程况明	16
		毕师犑式	16
4 -		左分犑式	16
4.3	5.	多进退扫描说明	16
		米 村 率	16
		重程	17
4.4	ŧ. ∶ -	転友源	17
4.5	.	関初输入模式	17
4.6).		18
		使用左分幌式(DIFF) 连接	18
		使用非接地参考単端模式(NRSE)连接	21
4 -	-	使用接地参考单编模式(RSE)连接	22
4./	· ·		23
		使用差分模式(DIFF)连接	23
		使用非接地参考毕场模式(NKSE)连接	24
		伏田 按 地 変 考 卑 峏 侯 式 (KSE) 建 按	25
5.	数字	ΙΟ	25
5.1	L. :	概述	25
5.2	2.	数字 IO 信号连接	25
6. ·	计数		26
6 1		概述	26
0.1			_0

目 录

6.2	2. 事件计数器	27
6.3	 周期/正脉宽/负脉宽测量 	27
6.4	4 . 计数器信号连接	27
7.	开发者编程说明	28
7.1	L. 概述	28
7.2	2. 基本函数	29
	FindUSBDAQ()	29
	OpenDevice()	29
	CloseDevice()	29
	ResetDevice()	29
7.3	3. 模拟输入相关函数	
	SetUSB1AiRange()	
	SetSampleRate()	
	SetChanMode()	
	SetChanSel()	31
	SetSoftTrig()	31
7.4	4. 数字 IO 相关函数	32
	SetDioOut()	32
7.5	5. 计数器相关函数	32
	SetCounter()	32
	StartCounter()	
	ClearCounter()	33
7.6	5. 读取数据控制函数	
	StartRead()	
	StopRead()	34
	GetAiChans()	34
	GetDioIn()	34
	GetCounter()	35
	GetCtrTime()	35
	ClearBufs()	35
	TransDioIn()	36
7.7	7. 错误代码	36
7.8	3. LabVIEW 开发者说明	37
7.9	9. MATLAB 开发者说明	37
8. [.]	订购信息	
9. [·]	售后服务与保修	39
10.)	文档修订历史	40

1.产品介绍

1.1. 概述

全新的 USB-1000 系列多功能数据采集卡为方便、快速的启动数据采集应用项目提供了新的选择。其灵巧的外形提供了超强的便携性和非常灵活的安装方式。

USB-1000 系列数据采集卡提供 12-bit,最高采样率达 500kS/s,最多 16 个模拟信号采集通道,其量程可以通道软件选择为 0~10V 或±5V。

USB-1000 系列数据采集卡还具备 16 个数字输入通道和 16 个数字输出通道以及 4 个计数器通道, 方便您搭建一定规模的自动控制系统。

1.2. 功能结构框图

图 1、USB-1000 系列数据采集卡功能结构框图

1.3. 产品特性

- 12-bit 模拟输入分辨率
- 最高 500kS/s 模拟输入采样率 (开启多通道时最高 200kS/s)
- 采样周期可按 20ns 步进任意设置

- 16 通道单端模拟输入或 8 通道差分模拟输入可通过软件配置
- 0~10V 或±5V 可通过软件配置
- 板载 16k 采样点 FIFO 缓存
- 16 通道数字输入和 16 通道数字输出
- 4 通道 32-bit 计数器
- LabVIEW、Visual Studio 以及 MATLAB 开发支持

1.4. 产品规范

下列产品规格参数,除非另外声明,均在温度为25℃,湿度为40%的环境中测得。

模拟输入

模拟输入通道数	16 通道单端或8 通道差分可通过软件配置	
同步采样	否	
模拟输入分辨率	12-bit	
转换器类型	逐次逼近型	
亚样索	单通道采集时:最高 500kS/s	
木 什平	多通道扫描时:最高 200kS/s	
定时分辨率	20ns	
模拟输入 FIFO 缓存	16k 采样点	
量程	0~10V 或-5~5V 可通过软件配置	
安全电压	±15V,输入电压超过安全电压将损坏采集卡	
输入阻抗	>1GQ(上电)	
输入耦合方式	DC	
触发方式	软件触发	
	NRSE 单端 0~10V 量程: 0.15mVrms	
乏公唱声	NRSE 单端±5V 量程: 0.3mVrms	
	DIFF 差分 0~10V 量程: 0.2mVrms	
	DIFF 差分±5V 量程: 0.4mVrms	

	NRSE 单端 0~10V 量程: 2.8mV
	NRSE 单端±5V 量程: 3mV
把刈 稍度 	DIFF 差分 0~10V 量程: 3mV
	DIFF 差分±5V 量程: 4mV

数字 IO

数字输出通道数	16
输出高电平电压	3.0~3.4V
输出低电平电压	0~0.1V
数字输入通道数	16
输入低电平电压	3.3~5V
输入高电平电压	0~0.5V

计数器

计数器数量	4
分辨率	32-bit
计数器测量	边沿计数,
计数方向	向上计数
最大输入频率	1MHz

总线接口

USB 接口规范	USB 2.0 高速接口
USB 接口连接器	USB 系列 B 型连接器

电源要求

USB 总线供电	4.75~5.25VDC
电流消耗	大约 300mA

其他规格

	USB-1252	USB-1252A	
尺寸 (mm)	不含连接器: 156*102*26	不含连接器: 155*96*25	
	含连接器: 161*102*26	含连接器: 155*112*25	
重量	大约 420g	大约 180g	
模拟通道信号连接器	10-PIN 螺栓端子连接器		
数字 IO 和计数器连接器	40-PIN IDC 连接器	10-PIN 螺栓端子连接器	
	0°C ~55°C		
运11 小 児	5%RH~90%RH,无凝露		
方体环接	-40°C ~85°C		
仔´´µ'小垷 	5%RH~90%RH, 无凝露		

2.外观与信号连接说明

2.1. 产品外观

USB-1000 系列数据采集卡的模拟输入信号连接采用插拔式螺栓端子连接器,USB 通讯接口采用 USB 系列 B 型连接器。整体外观与尺寸如图 2 和图 3 所示,尺寸标注以 mm 为单位。

102.40

图 2、USB-1252 数据采集卡外观

155

图 2、USB-1252A 数据采集卡外观

2.2. 信号连接说明

模拟输入信号

螺栓端子连接器,用于连接模拟输入信号,其引脚分布和对应信号详细说明见下图 3 和表 1。未使用的模拟输入通道,应将其接地以减小系统噪声和达到更高的稳定性。

图 3、USB-1252 模拟输入信号分配图

图 3、USB-1252A 模拟输入信号分配图

表1、模拟输入信号详细说明

名称	说明	
ai-sense	非接地参考单端信号参考端输入	
ai-gnd	模拟地	
ai-0	模拟输入通道,单端时 ai0,差分时 ai0+	

ai-1	模拟输入通道,单端时 ai1,差分时 ai0-
ai-2	模拟输入通道,单端时 ai2,差分时 ai1+
ai-3	模拟输入通道,单端时 ai3,差分时 ai1-
ai-4	模拟输入通道,单端时 ai4,差分时 ai2+
ai-5	模拟输入通道,单端时 ai5,差分时 ai2-
ai-6	模拟输入通道,单端时 ai6,差分时 ai3+
ai-7	模拟输入通道,单端时 ai7,差分时 ai3-
ai-8	模拟输入通道,单端时 ai8,差分时 ai4+
ai-9	模拟输入通道,单端时 ai9,差分时 ai4-
ai-10	模拟输入通道,单端时 ai10,差分时 ai5+
ai-11	模拟输入通道,单端时 ai11,差分时 ai5-
ai-12	模拟输入通道,单端时 ai12,差分时 ai6+
ai-13	模拟输入通道,单端时 ai13,差分时 ai6-
ai-14	模拟输入通道,单端时 ai14,差分时 ai7+
ai-15	模拟输入通道,单端时 ai15,差分时 ai7-

数字 IO 信号与计数器

位于 USB-1252 采集卡后方的 IDC 连接器,用于连接数字 IO 信号和计数器信号; USB-1252A 采集卡的数字 IO 和计数器也使用螺栓段子连接器,其引脚分布和对应信号详细 说明见下图 4 和表 2。

图 4、USB-1252 数字 IO 和计数器信号分配图

图 4、USB-1252A 数字 IO 和计数器信号分配图

表 2、数字 IO 和计数器信号详细说明

名称	参考	方向	说明
Di0~Di15	GND	输入	数字输入通道
Do0~Do15	GND	输出	数字输出通道
Ct0~Ct3	GND	输入	计数器通道

GND 数字地	
----------------	--

2.3. USB 连接器加固

面对 USB 接口容易脱落的缺点, USB-1000 系列数据采集卡可以用一根绑带将 USB 连接线固定在 USB-1000 系列数据采集卡机身,以防止脱落,详细使用方法见图 5。

图 5、USB 连接线加固示意图

3.安装与测试

3.1. 驱动安装

当第一次将 USB-1000 系列数据采集卡通过 USB 接口连接到 Windows 操作系统的计算 机时,需要安装驱动,计算机才能正确识别 USB-1000 系列数据采集卡。

这里以 Windows7 操作系统为例,驱动安装步骤如下:(对于 Windows8、Windows8.1 和 Windows10 操作系统需要先关闭驱动签名认证选项。对于 WindowsXP 操作系统无需其 他设置可直接使用。)

1) 打开 Windows 操作系统的设备管理器。

- 2) 在带有感叹号的设备" Smacq USB Series DAQ "上单击鼠标右键,选择 "更新驱动程序软件"。
- 3) 在弹出对话框中选择"浏览计算机以查找驱动程序软件"。
- 4) 然后选择"从计算机的设备驱动程序列表中选择"。
- 5) 保持默认点击"下一步"之后,点击"从磁盘安装"。
- 6) 在弹出对话框中点击"浏览",然后进入到光盘中的\USB-1000 Series DAQ\dirver 文件夹,然后进入"win7"文件夹,接下来 32 位操作系统进入"x86"文件夹,64 位 操作系统进入"x64"文件夹,选中"gusb.inf"文件之后,单击"打开"。(Windows8、 Windows8.1 和 Windows10 的驱动与 Windows7 一致,用同一文件。)
- 7) 在标题为"从磁盘安装"的这个对话框中点击"确定"。
- 点击"下一步",如果弹出 Windows 安全警告对话框,则需要选择第二项"始终安装 此驱动程序软件"。
- 9) 系统开始安装驱动程序,大约 30 秒之后,驱动程序就安装完成了,此时可以看到 设备管理器中的感叹号消失了,如下图 6 所示。

图 6、正确安装驱动之后的设备管理器显示图

3.2. 硬件安装

测试信号的连接详细请见后文对模拟输入、数字 IO 和计数器等章节的详细连接描述。 正确安装驱动与接入正确的信号之后,就可以运行资源光盘中任意一个 USB-1000 系列 采集卡的例程,示例程序将显示采集得到的信号。

4.模拟输入

4.1. 概述

USB-1000 系列数据采集卡具备 16 个模拟输入通道,可通过软件配置为 16 个单端输入通道或者 8 个差分输入通道。下图 7 为 USB-1000 系列数据采集卡的模拟输入功能框图。

图 7、模拟输入功能框图

USB-1000系列数据采集卡模拟输入功能框图中主要组件如下:

MUX: 多路复用器,将所需通道的信号导通输入到仪表放大器中。

模拟输入方式设置:设置模拟输入为差分输入、接地参考单端输入或者非接地参考单端 输入方式。关于这几种方式的详细说明参见 **4.2** 节内容。

PGIA: 可编程仪表放大器,用于设置量程。

ADC: 模数转换器,将模拟信号转换为数字信号。

AIFIFO:数据缓存 FIFO。

Smacq

4.2. 输入量程说明

单端模式

对于单端输入模式,信号正极连接 ai-n,信号负极连接 ai-gnd 或 ai-sense。其输入量 程范围可通过软件设置 0~10V 或±5V。

差分模式

对于差分输入模式,信号正极连接 AI+,信号负极连接 AI-。其输入量程范围可通过软件设置 0~10V 或±5V。

AI+和 AI-输入的电压可在-10V~10V 范围变化, 而实际测量得到的电压值为 AI+引脚与 AI-引脚的电压差值。

当量程范围被设置为 0~10V 时,差分模式能够测量到的电压范围需满足如下条件:

AI+和 AI-的电压都在-10V~10V 范围内,并且 0V ≥ (AI+) – (AI-) ≤ 10V 范围内的电压 都可以被正确测量。

当量程范围被设置为-5V~5V时,差分模式能够测量到的电压范围需满足如下条件:

AI+和 AI-的电压都在-10V~10V 范围内,并且-5V ≥ (AI+) – (AI-) ≤ 5V 范围内的电压 都可以被正确测量。

4.3. 多通道扫描说明

采样率

当采集卡工作在多通道扫描时,由于在通道切换时,仪表放大器需要足够的建立时间,因此此时最高能设置的采样率为 200kS/s。

设置采样率时,应该避免设置高于实际需求的采样率,因为采样率越低,仪表放大器就 有更充足的建立时间,这样可以提高数据采集精度。

量程

采集卡的量程为统一设置,当采集卡工作在多通道扫描时,所有通道的量程保持一致。

4.4. 触发源

USB-1000 系列数据采集卡模拟输入采集信号时,其触发源可以被设置为软件触发或数字 IO 输入通道 DINO 端口的上升沿或下降沿触发。

4.5. 模拟输入模式

USB-1000 系列数据采集卡的模拟输入通道可被配置为接地参考单端输入(RSE)或非接地参考单端输入(NRSE)或差分输入(DIFF)模式。下表 3 为浮地信号源和接地信号源的推荐模拟输入模式。

表3、模拟输入模式

模拟输入模式	浮地信号源(未连接建筑物地)	接地信号源
	● 未接地的热电偶	● 未隔离输出的信号
示例	● 隔离输出的信号	
	● 电池供电的设备	
差分输入 (DIFF)	USB-1000 信号源	USB-1000 信号源 AI+ + AI-

4.6. 浮地信号源

浮地信号源未连接至建筑物地,但是拥有一个隔离的参考地点。常见的浮地信号源有变 压器、热电偶、电池设备、光学隔离器、隔离放大器输出等。具有隔离输出的仪器或设备就 是一个浮地信号源。

注意: 在测量浮地信号源时,务必将信号源负端直接或通过电阻间接的 连接到 AGND。

使用差分模式(DIFF)连接

当满足下列任意条件时,应使用差分模式连接浮地信号:

- 模拟输入信号 AI+和 AI-都是有效信号
- 输入信号电压较低并且需要更高的精度
- 连接信号至采集卡的线缆长度超过3米
- 输入信号需要一个单独的参考地点或返回信号

• 信号导线所处环境有明显噪声

差分连接模式可降低噪声干扰,提高采集卡的共模抑制能力。

对于内阻小于 100Ω 的浮地信号源,可以直接将信号负端同时连接至 AI-和 AI-GND 端口,将信号正端连接至 AI+端口,如下图 8 所示。

图 8、直接连接的差分输入模式

但是对于内阻较大的浮地信号源,上述连接会导致差分信号失衡,共模噪声会耦合到 AI+信号上,而不会耦合到 AI-信号上,这样共模噪声就会出现在测量到的结果上。因此, 对于此类信号源,可以使用大约 100 倍信号源内阻的偏置电阻来连接 AI-端口和 AI-GND 端 口,如图 9 所示,这样可以使差分信号接近平衡,信号两端耦合等量的噪声,得到更好的共 模噪声抑制能力。

R≈100*信号源内阻

图 9、单个偏置电阻差分输入模式

对于内阻较大的浮地信号源,还可以如图 10 所示的使用两个偏置电阻的差分输入模式。 这钟完全平衡偏置电阻连接方式可以提供略好的噪声抑制能力,但是降低了信号源的负载并 引入了增益误差。例如,假设信号源内阻是 2kΩ,两个平衡电阻均为 100kΩ,那么信号源 负载就是 200kΩ,这样便产生了 1%的增益误差。

图 10、平衡偏置电阻差分输入模式

对于交流耦合的浮地信号源,需要用一个电阻来为仪表放大器正输入端 AI+提供直流回路,如图 11 所示。

如果该交流耦合的浮地信号源的内阻较小,连接 AI+与 AI-GND 的电阻阻值一般取

100kΩ 至 1MΩ,这样既不至于加重信号源的负载,又不因为仪表放大器的偏置电流而产生 偏移电压。此种情况,可以直接将 AI-与 AI-GND 相连接。

如果该交流耦合的浮地信号源的内阻较大,则应使用前面所描述的平衡偏置电阻差分输入模式,需要注意的是平衡偏置电阻可能引起的增益误差。

图 11、交流耦合浮地信号源差分输入方式

使用非接地参考单端模式(NRSE)连接

当满足下列所有条件时,可以使用非接地参考单端模式连接浮地信号:

- 输入信号电压幅度较高,大于 1V
- 连接信号至采集卡的线缆长度低于 3 米

如果信号不符合上述条件,建议使用差分模式连接,以保证更好的信号完整度。在单端 模式下,耦合进信号连线的静电噪声和电磁噪声多于差分模式。

非接地参考单端模式 (NRSE) 连接示意图如图 12 所示, 其接地电阻的阻值设置与差分 模式判断依据一致。

图 12、浮地信号源 NRSE 输入方式

使用接地参考单端模式(RSE)连接

当满足下列全部条件时,可以使用参考单端模式连接信号:

- 输入信号可与其他使用参考单端连接的信号共用一个公共参考点 AGND
- 输入信号电压幅度较高,大于 1V
- 连接信号至采集卡的线缆长度不超过3米

如果信号不符合上述条件,建议使用差分模式连接,以保证更好的信号完整度。在单端 模式下,耦合进信号连线的静电噪声和电磁噪声多于差分模式。

接地参考单端模式(RSE)连接示意图如图 13 所示。

图 13、浮地信号源 RSE 输入方式

4.7. 接地信号源

接地信号源是连接至建筑物地的信号源。如计算机连接的是与信号源相同的供电系统,则信号源实际已连接至相对于设备的一个公共接地点。连接建筑物供电系统的未隔离输出的 仪器和设备即属于此类信号源。

连接至同一建筑物供电系统的设备之间的电势差通常是 1 mV 至 100 mV,但如配电线路连接不合理,电势差可能更大。如测量方式不当,该电势差可能会导致测量误差。请遵循如下接地信号源的连接指南,以减少测量信号的接地电势差。

使用差分模式(DIFF)连接

当满足下列任意条件时,应使用差分模式连接信号:

- 模拟输入通道 AI+和 AI-都是有效信号
- 输入信号电压较低并且需要更高的精度
- 连接信号至采集卡的线缆长度超过**3**米
- 输入信号需要一个单独的参考地点或返回信号
- 信号导线所处环境有明显噪声

差分连接模式可降低噪声干扰,提高采集卡的共模抑制能力。差分连接方式允许输入信

号在仪表放大器共模工作范围内浮动。

使用差分模式连接接地信号源示意图如图 14 所示。

图 14、接地信号源 DIFF 输入方式

使用非接地参考单端模式(NRSE)连接

当满足下列所有条件时,可以使用非接地参考单端模式连接浮地信号:

- 输入信号电压幅度较高,大于 1V
- 连接信号至采集卡的线缆长度低于3米
- 输入信号共用一个电压不为 AI-GND 的参考点

如果信号不符合上述条件,建议使用差分模式连接,以保证更好的信号完整度。在单端模式下,耦合进信号连线的静电噪声和电磁噪声多于差分模式。

接地信号源的非接地参考单端模式(NRSE)连接示意图如图 15 所示。

图 15、接地信号源 NRSE 输入方式

使用接地参考单端模式(RSE)连接

对于接地信号源,在条件允许的情况下应使用差分模式(DIFF)或者非接地参考单端模式(NRSE)连接。如果使用接地参考单端模式(RSE)连接信号,信号源的地和采集卡自身的地可能存在电势差,该接地回路电势差会造成测量误差,如表3中所描述。

5.数字 IO

5.1. 概述

USB-1000 系列数据采集卡具备 16 个数字输入 Dīn 通道和 16 个数字输出 Dour 通道, GND 为数字 IO 端口的接地参考信号。

数字输入 DIN 通道兼容 0~5V 电平信号, 2~5V 判定为高电平, 0~0.5V 判定为低电平。数字输出 Dour 通道输出高电平为 3.3V, 输出低电平为 0V。

5.2. 数字 IO 信号连接

数字 IO 信号的连接示意图 16 所示。使用数字输出 Dour 信号时,尽量使用低电平驱动

图 16、数字 IO 信号连接

6.计数器

6.1. 概述

USB-1000 系列数据采集卡具备 4 个计数器通道,最高输入信号电压为 5V, GND 为计数器通道的接地参考信号。计数器可通过软件配置为以下三种功能:

- 事件计数器
- 周期测量
- 正脉宽测量
- 负脉宽测量

下图 17 为 USB-1000 系列数据采集卡的计数器功能框图。由于在计数器通道加入了比较器, USB-1000 系列数据采集卡的计数器功能可以对正弦波周期进行计数或测量。

图 17、计数器功能框图

6.2. 事件计数器

当采集卡的计数器通道用作事件计数器时,可以用来记录 Ct 端口的上升沿个数,也可 以通过软件设置为记录下降沿个数。

事件计数器只能递增计数,不能递减计数,即事件计数器的值根据接收到的脉冲个数, 依次累加为 0, 1, 2, 3, 4, 5,这样的递增计数。

6.3. 周期/正脉宽/负脉宽测量

采集卡的计数器通道可以通过软件设置为周期/正脉宽/负脉宽测量模式。

当被设置周期测量模式时,采集卡会测量出比较器输出的两次上升沿之间的时间,存放 于对应计数器通道结果中,时间精度为 **40ns**。

当被设置正脉宽测量模式时,采集卡会测量出比较器输出的一次上升沿和紧接着的一次 下降沿之间的时间,存放于对应计数器通道结果中,时间精度为 **40ns**。

当被设置负脉宽测量模式时,采集卡会测量出比较器输出的一次下降沿和紧接着的一次 上升沿之间的时间,存放于对应计数器通道结果中,时间精度为 40ns。

6.4. 计数器信号连接

计数器通道信号连接示意图如图 18 所示。

图 18、计数器信号连接示意图

7.开发者编程说明

7.1. 概述

开发者可以通过一个标准的动态链接库 usb-1000.dll 与 USB-1000 系列采集卡交互,从 而控制 USB-1000 系列数据采集卡具备的所有功能。

本章将对 usb-1000.dll 库所提供的所有函数一一详细说明,所有函数的调用格式也可以 在 usb-1000.h 文件中找到。详细控制和调用流程请参考例程。

7.2. 基本函数

FindUSBDAQ()

int _stdcall FindUSBDAQ()

查找连接到计算机的 USB-1000 系列采集卡。

返回值:已连接到计算机的 USB-1000 系列采集卡的数量。

OpenDevice()

int _stdcall OpenDevice(int DevIndex)

打开指定的设备。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。 **返回值:**0为无错误,其他请查阅第7.7节错误代码。

CloseDevice()

void _stdcall CloseDevice(int DevIndex)

关闭指定的设备。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

ResetDevice()

int _stdcall ResetDevice(int DevIndex)

复位指定的设备。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

7.3. 模拟输入相关函数

SetUSB1AiRange()

int _stdcall SetUSB1AiRange(int DevIndex, float Range)

设置采集卡模拟输入通道量程。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

Range,采集卡模拟输入通道量程,此参数只能设置 10 或者 5。10 代表 0~10V, 5 代表-5~5V。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

SetSampleRate()

int _stdcall SetSampleRate(int DevIndex, unsigned int SampleRate)

设置采集卡模拟输入通道的采样率。对于 USB-1000 系列数据采集卡,模拟输入通道使 用多通道时,为扫描方式,因此每通道采样率=设置采样率/使用通道数。例如,设置采样 率为 200kS/s,使用了 4 个通道,那么每通道采样率为 50kS/s。

采样周期最小时间分辨率为 20ns,因此,采样周期设置为 20ns 的整倍数,将获得最佳的采样周期精确度。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

SampleRate,采样率,以 S/s 为单位。例如需要设置采样率为 1kS/s,即设置 SampleRate 为 1000。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

SetChanMode()

int _stdcall SetChanMode(int DevIndex, unsigned char ChanMode)

设置通道模式,差分(DIFF)或非接地参考单端(NRSE)或接地参考单端(RSE)。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

ChanMode, 0 表示差分, 1 表示 NRSE, 3 表示 RSE, 其他无效。 返回值: 0 为无错误, 其他请查阅第 7.7 节错误代码。

SetChanSel()

int _stdcall SetChanSel(int DevIndex, unsigned short ChSel)

设置需要选择的通道。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

ChSel, 需要选择的通道。此参数的二进制位从低到高分别对应模拟输入通道的 ai0~ai15,1为选中该通道,0为不使用该通道。例如,如果需要选中 ai0 和 ai1, ChSel 应设置为 0x0003;如果需要选中 ai0 和 ai2, ChSel 应设置为 0x0005。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

如果模拟通道被配置为差分输入模式,那么通道选择时只能选择 ai0~ai7,否则将会导致错误。

SetSoftTrig()

int _stdcall SetSoftTrig(int DevIndex, unsigned char Trig)

设置软件触发。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

Trig,软件触发开关,0表示关闭触发,1表示打开触发。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

7.4. 数字 IO 相关函数

SetDioOut()

int _stdcall SetDioOut(int DevIndex, unsigned int DioOut)

设置数字 IO 输出通道 Dour 值。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

DioOut,数字 IO 输出通道 DOUT 值。DioOut 的低 16 位对应数字 IO 输出通道 DOUT

的16个通道。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

7.5. 计数器相关函数

SetCounter()

int _stdcall SetCounter(int DevIndex, unsigned char CtrNum, unsigned char CtrMode, unsigned char CtrEdge)

设置计数器功能。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

CtrNum, 计数器通道索引号。0~3 对应 Ct0~Ct3。如果设置 0x0f 表示 4 个通道计数器同时操作。

CtrMode, 计数器工作模式, 0 表示事件计数器模式, 1 表示测量周期, 2 表示测量正脉宽, 3 表示测量负脉宽。

CtrEdge,当工作于事件计数器模式时,本参数为1表示计数上升沿,2表示计数下降沿。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

StartCounter()

int _stdcall StartCounter(int DevIndex, unsigned char CtrNum, unsigned char OnOff)

计数器工作开关, 启动或停止计数器。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

CtrNum, 计数器通道索引号。0~3 对应 Ct0~Ct3。如果设置 0x0f 表示 4 个通道计数器同时操作。

OnOff, 1 表示启动计数器, 0 表示停止计数器。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

ClearCounter()

int _stdcall ClearCounter(int DevIndex, unsigned char CtrNum)

计数器归零。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

CtrNum, 计数器通道索引号。0~3 对应 Ct0~Ct3。如果设置 0x0f 表示 4 个通道计数器同时操作。

返回值: 0 为无错误, 其他请查阅第 7.7 节错误代码。

7.6. 读取数据控制函数

StartRead()

int _stdcall StartRead(int DevIndex)

启动读数。本函数将自动启用一个线程,自动将采集卡硬件 FIFO 中的数据读回来存储 计算机的软件 FIFO 中。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

StopRead()

int _stdcall StopRead(int DevIndex)

停止读数。本函数将终止 StartRead()函数中启用的读数线程。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

GetAiChans()

int _stdcall GetAiChans(int DevIndex, unsigned long Num, unsigned short ChSel, float *Ai, long TimeOut)

用户读取软件 FIFO 中存储的模拟输入通道采样数据。如果需要连续采样,只需要重复 调用本函数即可得到连续采样波形。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

Num,本次读取模拟采样点数,表示每通道需要读取的点数。

ChSel, 需要选择的通道。此参数的二进制位从低到高分别对应模拟输入通道的 ai0~ai15,1为选中该通道,0为不使用该通道。例如,如果需要选中 ai0 和 ai1, ChSel 应设置为 0x0003;如果需要选中 ai0 和 ai2, ChSel 应设置为 0x0005。

*Ai,用于存储读出来的模拟采集数据的数组指针。

TimOut,超时时间设置。如果在设置的时间内,软件 FIFO 中还没有采集到足够的 Num 个采样点,函数退出,返回超时错误码。

返回值:返回值为非负数时,表示软件 FIFO 剩余的空间,是 0 到 2000000 的整数;返回负数时,表示出错,请查阅第 7.7 节错误代码。

GetDioIn()

unsigned int _stdcall GetDioIn(int DevIndex)

读取数字 IO 通道 DIN 的值。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。 返回值:返回数字 IO 通道 DIN的值,低16 位对应 DIN0~DIN15 的值。

GetCounter()

unsigned int _stdcall GetCounter(int DevIndex, unsigned char CtrNum) 读取事件计数器的值。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。 CtrNum,计数器通道索引号。0~3对应Ct0~Ct3。

返回值:事件计数器的值。

GetCtrTime()

double _stdcall GetCtrTime(int DevIndex, unsigned char CtrNum)

读取周期/正脉宽/付脉宽测量值,以 us 为单位。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

CtrNum, 计数器通道索引号。0~3 对应 Ct0~Ct3。

返回值:周期/正脉宽/付脉宽测量值,以 us 为单位。

ClearBufs()

int _stdcall ClearBufs(int DevIndex)

清空模拟输入缓存,包括软件 FIFO 和硬件 FIFO。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。 返回值:0为无错误,其他请查阅第7.7节错误代码。

TransDioIn()

int _stdcall TransDioIn(int DevIndex, unsigned char TransDioSwitch)

启动单独传输数字端口数据,包含 D_{IN} 数据和计数器数据。当您只需要传输数字输入 DIN 通道数据或计数器数据时,需要先调用此函数。如果您已经开启了模拟采集,则不需要 调用此函数也能得到正确的 D_{IN}数据和计数器值。详细使用方法请参考数字 IO 和计数器的 例程。

参数:

DevIndex,采集卡索引号,以0为第一块采集卡的索引号。

TransDioSwitch,数据传输开关,1为开启,0为停止。

返回值: 0 为无错误,其他请查阅第 7.7 节错误代码。

7.7. 错误代码

对于函数操作中返回值如果出现了负数,则表示操作出现了错误,详细错误代码如下表 4 所示。

表4、错误代码

错误代码	说明
-1	没有发现连接到计算机的 USB-1000 系列数据采集卡。
-2	数据采集卡索引越界。
-3	数据采集卡固件错误。
-4	数据采集卡已关闭。
-5	传输数据出错。
-6	计算机没有足够的内存。
-7	超时。
-8	读数线程未启动。

7.8. LabVIEW 开发者说明

对于 LabVIEW 开发者,同样可以通过调用动态链接库的方法来实现对采集卡的操作。 同时,我们提供的系列子 vi 包含了前文所述的所有函数功能,并且提供了例程来说明,这 些文件都可以从资源光盘中找到。

7.9. MATLAB 开发者说明

对于 MATLAB 开发者,同样可以通过调用动态链接库的方法来实现对采集卡的操作。 同时,我们提供的系列 m 文件包含了前文所述的所有函数功能,并且提供了例程来说明, 这些文件都可以从资源光盘中找到。

8.订购信息

主机

型号	说明	
USB-1252	12-bit 分辨率,16 通道,最高采样率 500kS/s,金属外壳	
USB-1252A	12-bit 分辨率,16 通道,最高采样率 500kS/s,ABS 外壳	

标配附件

型号	说明		
USB-A-B	USB 连接线缆, 1.5 米, USB-A 型至 USB-B 型		
TB10-3.81	螺栓端子连接器,10位,3.81mm间距		

选配附件

型号	说明	
SDIN	35mmDIN 导轨安装支架	
CHF-100B	电流传感器,100A,DC~20kHz,输出±4V	
CHV-600VD	电压传感器,600V,DC~20kHz,隔离差分输入,输出±5V	

9.售后服务与保修

北京思迈科华技术有限公司承诺其产品在保修期内,如果经正常使用的产品发生故障,我们将为用户免费维修或更换部件。详细保修说明请参考包装箱内保修说明。

除本手册和保修说明所提及的保证以外,我公司不提供其他任何明示或暗示的的保证,包括但不限于对产品可交易性和特殊用途适用性的任何暗示保证。

获得更多的技术支持与服务细节,或您在使用本产品和本文档时有任何问题,欢迎 您与我们取得联系:

电话: 010-52482802

电子邮箱: service@smacq.com

网站: www.smacq.com

www.smacq.cn

10. 文档修订历史

日期	版本	备注
2016.8.30	Rev: A	首次发布。
2017.9.25	Rev: B	删除 USB-1250 型号, 增补新发布的 USB-1252A 型号。